SUMMARY OF PRODUCT CHARACTERISTICS
for
MAASOL, kit for radiopharmaceutical preparation

1. NAME OF THE MEDICINAL PRODUCT
MAASOL kit for radiopharmaceutical preparation

2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Human albumin macroaggregates, 1.75 milligrams / vial

<table>
<thead>
<tr>
<th>Particles number</th>
<th>2.0 x 10^6 ± 15% / vial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of aggregates</td>
<td>10 - 100 μm</td>
</tr>
</tbody>
</table>

The product is prepared from human serum albumin derived from human blood donations tested according to the EEC REGULATIONS and found non reactive for:
- Hepatitis B surface antigen (HBsAg)
- Antibodies to human immunodeficiency virus (anti HIV 1/2)
- Antibodies to hepatitis C virus (anti HCV)

MAASOL is reconstituted with Sodium Pertechnetate (99mTc) Injection (not included in this kit) to prepare technetium-99m human albumin macroaggregates injection.

Excipient(s) with known effect:
Before reconstitution, this medicinal product contains: Sodium: 0.30 mg/vial

For a full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM
Kit for radiopharmaceutical preparation.
Powder for suspension for injection.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

This medicinal product is for diagnostic use only.

After reconstitution with Sodium Pertechnetate (99mTc) injection, the solution obtained is indicated for:
- Pulmonary perfusion scintigraphy.
- As secondary indication 99mTc-albumin macroaggregates injections may be used for venoscintigraphy.

4.2 Posology and method of administration

Posology

Adults

Recommended activities to be administered intravenously to an adult weighing 70 kg vary between 37-185 MBq (1-5 mCi). The number of particles per administered dose must be in a range of $60 \times 10^3 - 700 \times 10^3$.

The lung test may start immediately after injection.

Renal/Hepatic impairment

Careful consideration of the activity to be administered is required since an increased radiation exposure is possible in these patients.

Paediatric population

The use in children and adolescents has to be considered carefully, based upon clinical needs and assessing the risk/benefit ratio in this patient group.

The activity to be administered to children and to adolescents should be a fraction of the adult activity and should be calculated according to the following equation:

$$\text{Paediatric dose (MBq)} = \frac{\text{Adult dose (MBq)} \times \text{child weight (kg)}}{70 \text{ kg}}$$

Although body weight is the more used factor on which to base the adjustment of the activity administered, in a limited number of cases the body surface area may be considered to be more appropriate.

$$\text{Paediatric dose (MBq)} = \frac{\text{Adult dose (MBq)} \times \text{child surface (m}^2\text{)}}{1.73}$$

Method of administration

This medicinal product should be reconstituted before administration to the patient.
For instruction on reconstitution of the medicinal product before administration, see section 12.

For patient preparation, see section 4.4.

4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and special precautions for use

Potential for hypersensitivity or anaphylactic reactions
If hypersensitivity or anaphylactic reactions occur, the administration of the medicinal product must be discontinued immediately and intravenous treatment initiated, if necessary. To enable immediate action in emergencies the necessary medicinal products and equipment such as endotracheal tube and ventilator must be immediately available.

Special care should be exercised when administering 99mTc albumin macroaggregates (MAA) to patients with significant right to left cardiac shunt. In order to minimise the possibility of microembolism to the cerebral and renal circulations 99mTc-MAA should be given by slow intravenous injection and the number of particles reduced by up 50%. Such precautions are also advised in patients with respiratory failure complicating pulmonary hypertension.

Standard measures for preventing transmission of infections from pharmaceuticals made of human blood or plasma, include selection of donators, test of individual donators and plasma pools for finding specific infective agents, and effective manufacturing steps for inactivation/elimination of virus as a part of manufacturing process as well. In spite of that, the risk of transmission of infectious agents cannot be eliminated completely, as long as pharmaceuticals made of human blood or plasma are used. This also applies to new virus of unknown nature and other pathogens as well.

There are no reports of virus transmission in connection with albumin, made in accordance with specifications in Ph. Eur. and in accordance with routine processes.

It is strongly recommended that the product name and batch number are stated every time Maasol is given to a patient, in order to maintain a connection between the patient and the product’s batch number.

Individual benefit/risk justification
For each patient, the radiation exposure must be justifiable by the likely benefit. The activity administered should in every case be as low as reasonably achievable to obtain the required diagnostic information.

Renal/Hepatic impairment
Careful consideration of the benefit risk ratio in these patients is required since an increased radiation exposure is possible.

Paediatric population
For information on the use in paediatric population, see section 4.2. Careful consideration of the indication is required since the effective dose per MBq is higher than in adults (see section 11).

Patient preparation:
The patient should be well hydrated before the start of the examination and urged to void as often as possible during the first hours after the examination in order to reduce radiation.

Contents of the vial are intended only for use in the preparation of 99mTc-human albumin macroaggregates (MACROSLAB) Injection and are not to be administered directly to the patient without first undergoing the preparative procedure.

The syringe should be gently swirled immediately prior to the injection to homogenise the injectate. Blood should never be drawn into the syringe because that induces the formation of small clots.

Specific warnings:
Before reconstitution this medicinal product contains less than 1 mmol sodium (23 mg) per vial, i.e. essentially ‘sodium- free’. Depending on the reconstituted volume and radioactivity at the time of administration, the content of sodium given to the patient may in some cases be greater than 1 mmol. This should be taken into account in patients on low sodium diet.

Precautions with respect to environmental hazard see section 6.6.

4.5 Interaction with other medicinal products and other forms of interaction

Changes in the biological distribution of 99mTc-MAA may be induced by different drugs.
- Pharmacologic interactions may be caused by chemotherapeutic agents, heparin and bronchodilators.
- Toxicological interactions may be caused by heroin, nitrofurantoin, busulfan, cyclophosphamide, bleomycin, methotrexate, methysergide.
- Pharmaceutical interactions may be caused by magnesium sulphate.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential
When an administration of radiopharmaceuticals to a woman of childbearing potential is intended, it is important to determine whether or not she is pregnant. Any woman who has missed a period should be assumed to be pregnant until proven otherwise. If in doubt about her potential pregnancy (if the woman has missed a period, if the period is very irregular, etc.) alternative techniques not using ionizing radiation (if there are any) should be offered to the patient.

Pregnancy
Radionuclide procedures carried out on pregnant women also involve radiation doses to the foetus. Only essential investigations should therefore be carried out during pregnancy, when the likely benefit far exceeds the risk incurred by the mother and the foetus.

Breast-feeding
Before administering a radioactive medicinal product to a mother who is breast-feeding consideration should be given to the possibility of delaying the administration of radionuclide until the mother has ceased breast-feeding, and to what is the most appropriate choice of radiopharmaceuticals, bearing in mind the secretion of activity in breast milk. If the administration is considered necessary, breast-feeding should be interrupted for 12 hours and the expressed feeds discarded.

Fertility
No studies on fertility have been performed.

4.7 Effects on ability to drive and use machines
No studies on the effects on ability to drive and use machines have been performed.

4.8 Undesirable effects
For safety with respect to transmissible agents see section 4.4.

The frequencies of undesirable effects are defined as follows:
Very common ($\geq 1/10$), common ($\geq 1/100$ to $<1/10$), uncommon ($\geq 1/1,000$ to $<1/100$), rare ($\geq 1/10,000$ to $<1/1,000$), very rare ($<1/10,000$) and not known (cannot be estimated from the available data)
Congenital, familial and genetic disorders
Frequency not known

- Hereditary defects.

Neoplasms benign, malignant and unspecified (including cysts and polyps)
Frequency not known

- Cancer induction.

Immune system disorders
Frequency not known

- Hypersensitive - type reactions, including very rare life-threatening anaphylaxis; chest pain, rigor and collapse.
- Application site hypersensitivity.

Exposure to ionising radiation is linked with cancer induction and a potential for development of hereditary defects. As the effective dose is 2.04 mSv when the maximal recommended activity of 185 MBq is administered these adverse reactions are expected to occur with a low probability.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorization of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system:

Norway
Statens legemiddelverk
Web site: www.legemiddelverket.no/meldeskjema

4.9 Overdose

The number of MAA particles per adult patient must not exceed 1.5×10^6.

In the event of administration of a radiation overdose with Maasol the absorbed dose to the patient should be reduced where possible by increasing the elimination of the radionuclide from the body by frequent micturition or by forced diuresis and frequent bladder voiding. It might be helpful to estimate the effective dose that was applied.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Technetium (99mTc), particles for injection
ATC code: V09EB01
Pharmacodynamic effects
At the chemical concentrations used for diagnostic examinations, Technetium-99m macroaggregates injections do not appear to have any pharmacodynamic activity.

Clinical efficacy and safety
See Pharmacodynamic effects

5.2 Pharmacokinetic properties

Distribution
Following injection into a superficial vein of the systemic venous circulation, the macroaggregates are carried at the speed of this circulation to the first capillary filter, i.e. the capillary tree of the pulmonary artery system.

Organ Uptake
The albumin macroaggregate particles do not penetrate the lung parenchyma (interstitial or alveolar) but remain in a temporary occlusive position in the lumen of the capillary. When pulmonary flow distribution is normal, the compound distributes over the entire pulmonary area following physiologic gradients; when district flow is altered the areas of reduced flow are reached by a proportionally smaller amount of particles. The technetium labelled macroaggregates remain in the lungs for variable periods of time, depending of the structure, size and number of particles.

Elimination
See Half-life

Half-life
The disappearance of activity from the particles in the lungs is governed by an exponential law; the larger aggregates have a longer biological half-life, whereas particles between 5 and 90 µm in diameter have a half-life ranging from 2 to 8 hours.

The decrease in pulmonary concentration is caused by the mechanical break-down of the particles occluding the capillaries, stemming from the systolic-diastolic pressure pulsations within the capillary itself.

The products of macroaggregate break-down, once recirculated as albumin micro colloid, are quickly removed by the macrophages of the reticuloendothelial system, i.e. essentially the liver and the spleen.

The microcolloid is metabolized with introduction of the radioactive label technetium-99m into the systemic circulation from which it is removed and excreted in urine.

Renal/Hepatic impairment
The pharmacokinetics in patients with renal or hepatic impairments has not been characterised.
5.3 Preclinical safety data
Toxicological studies with dogs have demonstrated that doses of 20 - 50 mg / kg cause sudden death for respiratory failure. A safety factor of 100 is found after injection in dogs of 14000 technetium-99m - macroaggregates (size: 30 - 50 μm).
Toxicity studies with repeated administration of technetium-99m – macroaggregates performed in dogs show no detectable variations in the general behaviour of the animals.
No evidence of pathological changes in the main organs has been detected.
There is no evidence in the literature of teratogenic, mutagenic or carcinogenic effect of the unlabelled product. This medicinal product is not intended for regular or continuous administration.
Non-clinical data reveal no special hazard for humans based on conventional studies of pharmacology, acute toxicity or local tolerance.

Correlation exists between the size of the macroaggregates and their toxic effects.
The pathophysiologic mechanism responsible for toxicity is shown to be the increase of the pulmonary blood pressure. With particles from 10 to 50 μm in diameter the first pulmonary signs of toxicity in dogs (e.g. tachypnea) appear after injection of 20 to 25 mg per kg of body weight.
A sharp increase of the pulmonary blood pressure is noticed when 20 mg of less than 80 μm sized macroaggregates are injected, while no significant pressure changes are recorded with 40 mg of less than 35 μm macroaggregates particles.
With suspension of macroaggregates up to 150 μm diameter, no blood pressure changes appear below 10 mg / kg, while larger diameter suspensions (up to 300 μm) typical blood pressure changes in pulmonary artery appear when the doses exceed 5 mg / kg.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients
Stannous chloride, dihydrate
Sodium acetate
Poloxamer 238
Nitrogen

6.2 Incompatibilities
This medicinal product must not be mixed with other medicinal products except those mentioned in section 12.

6.3 Shelf life
Kit before reconstitution: 24 months from the date of manufacture.
Reconstituted product: should be used within 6 hours after labelling. Store below 25°C. Do not refrigerate or freeze.

6.4 Special precautions for storage

Store in a refrigerator (2-8°C)

For storage conditions after reconstitution of the medicinal product, see section 6.3.

Storage of radiopharmaceuticals should be in accordance with national regulations on radioactive material.

6.5 Nature and contents of the container

10 ml, (Ph.Eur. Type I), glass vials sealed by bromobutyl rubber stoppers and metal flip-off caps, placed in a polystyrene tray, and a package insert, inserted in a cardboard box.

Pack size: kit contains 5 vials.

6.6 Special precautions for disposal and other handling

General warning
Radiopharmaceuticals should be received, used and administered only by authorised persons in designated clinical settings. Their receipt, storage, use, transfer and disposal are subject to the regulations and/or appropriate licenses of the competent official organization.

Radiopharmaceuticals should be prepared in a manner which satisfies both radiation safety and pharmaceutical quality requirements. Appropriate aseptic precautions should be taken.

Contents of the vial are intended only for use in the preparation of technetium-99m human albumin macroaggregates injection and are not to be administered directly to the patient without first undergoing the preparative procedure.

For instructions on reconstitution of the medicinal product before administration, see section 12.

If at any time in the preparation of this product the integrity of this vial is compromised it should not be used.

Administration procedures should be carried out in a way to minimise risk of contamination of the medicinal product and irradiation of the operators. Adequate shielding is mandatory.
The content of the kit before reconstitution is not radioactive. However, after Sodium Pertechnetate (^{99m}Tc) is added, adequate shielding of the final preparation must be maintained.

The administration of radiopharmaceuticals creates risks for other persons from external radiation or contamination from spill of urine, vomiting, etc. Radiation protection precautions in accordance with national regulations must therefore be taken.

The residues may be put in an ordinary waste bin in so far as the activity of vials and syringes does not exceed that of background when measured with a low level radiation detector.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORITY

GE Healthcare S.r.l.
Via Galeno, 36
20126 Milan - Italy

8. MARKETING AUTHORITY NUMBER

8282

9. DATE OF FIRST AUTHORIZATION/RENEWAL OF THE AUTHORIZATION

1997-09-30/2006-01-26

10. DATE OF REVISION OF THE TEXT

22.11.2016

11. DOSIMETRY

Technetium (^{99m}Tc) is produced by means of a ($^{99}\text{Mo}/^{99m}\text{TC}$) generator and decays with the emission of gamma radiation with a mean energy of 140 keV and a half-life of 6.02 hours to technetium-99m which, in view of its long half-life of 2.13×10^5 years can be regarded as quasi stable.

According to ICRP 80 (1998) the radiation doses absorbed by the patient are the following:
<table>
<thead>
<tr>
<th>Organ</th>
<th>Adult</th>
<th>15 year</th>
<th>10 year</th>
<th>5 year</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenals</td>
<td>6.8E-03</td>
<td>8.8E-03</td>
<td>1.3E-02</td>
<td>1.9E-02</td>
<td>3.1E-02</td>
</tr>
<tr>
<td>Bladder wall</td>
<td>8.7E-03</td>
<td>1.1E-02</td>
<td>1.4E-02</td>
<td>1.6E-02</td>
<td>3.0E-02</td>
</tr>
<tr>
<td>Bone surfaces</td>
<td>5.1E-03</td>
<td>6.4E-03</td>
<td>9.1E-03</td>
<td>1.4E-02</td>
<td>2.6E-02</td>
</tr>
<tr>
<td>Brain</td>
<td>9.2E-04</td>
<td>1.2E-03</td>
<td>2.0E-03</td>
<td>3.2E-03</td>
<td>5.5E-03</td>
</tr>
<tr>
<td>Breast</td>
<td>5.0E-03</td>
<td>5.6E-03</td>
<td>9.9E-03</td>
<td>1.4E-02</td>
<td>2.1E-02</td>
</tr>
<tr>
<td>Gall bladder</td>
<td>5.6E-03</td>
<td>7.0E-03</td>
<td>1.0E-02</td>
<td>1.6E-02</td>
<td>2.4E-02</td>
</tr>
<tr>
<td>GI tract:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>3.7E-03</td>
<td>5.2E-03</td>
<td>8.0E-03</td>
<td>1.2E-02</td>
<td>2.0E-02</td>
</tr>
<tr>
<td>Small intestine</td>
<td>2.0E-03</td>
<td>2.6E-03</td>
<td>4.3E-03</td>
<td>6.8E-03</td>
<td>1.2E-02</td>
</tr>
<tr>
<td>Colon</td>
<td>1.9E-03</td>
<td>2.6E-03</td>
<td>4.3E-03</td>
<td>6.9E-03</td>
<td>1.2E-02</td>
</tr>
<tr>
<td>(ULI)</td>
<td>2.2E-03</td>
<td>2.9E-03</td>
<td>5.0E-03</td>
<td>8.3E-03</td>
<td>1.4E-02</td>
</tr>
<tr>
<td>(LLI)</td>
<td>1.6E-03</td>
<td>2.1E-03</td>
<td>3.3E-03</td>
<td>5.0E-03</td>
<td>9.5E-03</td>
</tr>
<tr>
<td>Heart</td>
<td>9.6E-03</td>
<td>1.3E-02</td>
<td>1.8E-02</td>
<td>2.5E-02</td>
<td>3.8E-02</td>
</tr>
<tr>
<td>Kidneys</td>
<td>3.7E-03</td>
<td>4.8E-03</td>
<td>7.2E-03</td>
<td>1.1E-02</td>
<td>1.8E-02</td>
</tr>
<tr>
<td>Liver</td>
<td>1.6E-02</td>
<td>2.1E-02</td>
<td>3.0E-02</td>
<td>4.2E-02</td>
<td>7.4E-02</td>
</tr>
<tr>
<td>Lungs</td>
<td>6.6E-02</td>
<td>9.7E-02</td>
<td>1.3E-01</td>
<td>2.0E-01</td>
<td>3.9E-01</td>
</tr>
<tr>
<td>Muscles</td>
<td>2.8E-03</td>
<td>3.7E-03</td>
<td>5.2E-03</td>
<td>7.7E-03</td>
<td>1.4E-02</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>6.1E-03</td>
<td>7.7E-03</td>
<td>1.1E-02</td>
<td>1.5E-02</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>Ovaries</td>
<td>1.8E-03</td>
<td>2.3E-03</td>
<td>3.5E-03</td>
<td>5.4E-03</td>
<td>1.0E-02</td>
</tr>
<tr>
<td>Pancreas</td>
<td>5.6E-03</td>
<td>7.5E-03</td>
<td>1.1E-02</td>
<td>1.7E-02</td>
<td>2.9E-02</td>
</tr>
<tr>
<td>Red marrow</td>
<td>3.2E-03</td>
<td>3.8E-03</td>
<td>5.3E-03</td>
<td>7.2E-03</td>
<td>1.2E-02</td>
</tr>
<tr>
<td>Skin</td>
<td>1.5E-03</td>
<td>1.7E-03</td>
<td>2.7E-03</td>
<td>4.3E-03</td>
<td>7.8E-03</td>
</tr>
<tr>
<td>Spleen</td>
<td>4.1E-03</td>
<td>5.5E-03</td>
<td>8.3E-03</td>
<td>1.3E-02</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>Testes</td>
<td>1.1E-03</td>
<td>1.4E-03</td>
<td>2.2E-03</td>
<td>3.3E-03</td>
<td>6.2E-03</td>
</tr>
<tr>
<td>Thymus</td>
<td>6.1E-03</td>
<td>7.7E-03</td>
<td>1.1E-02</td>
<td>1.5E-02</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>Thyroid</td>
<td>2.5E-03</td>
<td>3.3E-03</td>
<td>5.7E-03</td>
<td>9.0E-03</td>
<td>1.6E-02</td>
</tr>
<tr>
<td>Uterus</td>
<td>2.2E-03</td>
<td>2.8E-03</td>
<td>4.2E-03</td>
<td>6.0E-03</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>Remaining organs</td>
<td>2.8E-03</td>
<td>3.6E-03</td>
<td>5.0E-03</td>
<td>7.4E-03</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>Effective dose</td>
<td>1.1E-02</td>
<td>1.6E-02</td>
<td>2.3E-02</td>
<td>3.4E-02</td>
<td>6.3E-02</td>
</tr>
</tbody>
</table>

The effective dose resulting from the administration of a (maximal recommended) activity of 185 MBq for an adult weighing 70 kg is about 2.04 mSv. For an administered activity of 185 MBq the typical radiation dose to the target organ, lungs, is 12.2 mGy and the typical radiation dose to the critical organs adrenals, bladder wall, liver, pancreas, spleen, are 1.26 - 1.61 - 2.96 - 1.04 and 0.76 mGy, respectively.
12. INSTRUCTIONS FOR PREPARATION OF RADIOPHARMACEUTICALS

13. Withdrawals should be performed under aseptic conditions. The vials must not be opened before disinfecting the stopper, the solution should be withdrawn via the stopper using a single dose syringe fitted with suitable protective shielding and a disposable sterile needle or using an authorised automated application system.

If the integrity of this vial is compromised, the product should not be used.

Method of preparation

- Place a vial containing the macroaggregates in a convenient lead shield.
- Aseptically introduce into the vial 4-8 ml technetium-99m Sodium Pertechnetate (99mTc) Injection Ph. Eur. with a radioactivity ranging from 1480 to 2960 MBq (40 to 80 mCi).
- Do not use a breather needle.
- Relieve the excess of pressure in the vial by simply withdrawing an equal volume of gas in the syringe.
- Invert carefully a few times to suspend the dried albumin. Then allow standing for about 5 min at room temperature.
- Shake before withdrawing a dose.
- In no case should the preparation be left in contact with air.

Quality control

A - Non filterable radioactivity at 5 min after labelling:
- Membrane filter: 3 µm diameter pore filter
- Filtered volume: 200 µl
- Wash solution: 20 ml saline solution

The radioactivity remaining in the membrane must be ≥ 90 % of the total radioactivity.

B - Radiochemical purity test at 5 min after labelling
Free 99mTc by chromatography on TLC-SA:
- Support: TLC-SA
- Eluent: methanol: water 85:15 v/v
- Time: 25-30 min
- Free 99mTc ([99mTc]O₄⁻) : ≤ 5.0 %
- Rf (Free 99mTc): 0.9±10 %

Execution of TLC chromatography:
(i) Prepare a non-activated TLC-SA strip 2cm (± 2mm) wide x 12cm long. Label the strip clearly. Make a small pencil mark approximately 2.5cm from the bottom of the strip to mark the origin.
(ii) Transfer 85:15% v/v methanol/water to a chromatography tank to a depth of approximately 1cm.

(iii) Using a suitable syringe dispense a small drop (5 - 10µL) of the preparation onto the strip at the origin. Note: do not let the applied sample get in contact with the pencil mark.

(iv) Immediately place the strip in the chromatography tank and place a suitable lid on the tank. Make sure that the applied sample does not come into contact with the mobile phase.

(v) Allow the strip to eluate until the solvent front has travelled a distance of approximately 7cm. This takes approximately 25 - 30 minutes. Remove the strip from the tank, mark the solvent front and allow to dry.

(vi) Obtain a scan of the strip using a suitable radiochromatogram scanner.

Interpretation of Chromatograms

\[^{99m}\text{Tc}\text{-macrosalb}\] remains at the origin. (Rf: 0.0-0.1)
\[^{99m}\text{Tc}\text{O}_4^-\] migrates to the solvent front.